jueves, 24 de mayo de 2012

DESARROLLO

Definiciones formalesHay muchas maneras de definir formalmente una integral, no todas equivalentes. Se establecen diferencias para poder abordar casos especiales que no pueden ser integrables con otras definiciones, pero también en ocasiones por razones pedagógicas. Las definiciones más utilizadas de la integral son las integrales de Riemann y las integrales de Lebesgue.
 Integral de Riemannhttp://bits.wikimedia.org/static-1.20wmf3/skins/common/images/magnify-clip.pngLa integral de Riemann se define en términos de sumas de Riemann de funciones respecto de particiones etiquetadas de un intervalo. Sea [a,b] un intervalo cerrado de la recta real; entonces una partición etiquetada de [a,b] es una secuencia finita
  a = x_0 \le t_1 \le x_1 \le t_2 \le x_2 \le \cdots \le x_{n-1} \le t_n \le x_n = b . \,\! y denotamos la partición como  \mathit{P}=\{x_i|i=0,1,...,n\}\,\! http://bits.wikimedia.org/static-1.20wmf3/skins/common/images/magnify-clip.pngEsto divide al intervalo [a,b] en n subintervalos [xi−1xi], cada uno de los cuales es "etiquetado" con un punto especificado ti de; [xi−1xi]. Sea Δi = xixi−1 la anchura del subintervalo i; el paso de esta partición etiquetada es el ancho del subintervalo más grande obtenido por la partición, maxi=1…n Δi. Un sumatorio de Riemann de una funciónf respecto de esta partición etiquetada se define comoAsí cada término del sumatorio es el área del rectángulo con altura igual al valor de la función en el punto especificado del subintervalo dado, y de la misma anchura que la anchura del subintervalo. La integral de Riemannde una función f sobre el intervalo [a,b] es igual a S si:Para todo ε > 0 existex δ > 0 tal que, para cualquier partición etiquetada [a,b] con paso más pequeño que δ, se tiene, donde Cuando las etiquetas escogidas dan el máximo (o mínimo) valor de cada intervalo, el sumatorio de Riemann pasa a ser un sumatorio de Darboux superior (o inferior), lo que sugiere la estrecha conexión que hay entre la integral de Riemann y la integral de Darboux.
Integral de DarbouxLa Integral de Darboux se define en términos de sumas de los siguientes tipos:. Llamadas suma inferior y superior respectivamente, donde M_i=sup\{f(x)|x\in[x_{i-1},x_i]\},m_i=inf\{f(x)|x\in[x_{i-1},x_i]\} son las alturas de los rectángulos, y xi-xi-1 la longitud de la base de los rectángulos.
La Integral de Darboux está definida como el único número acotado entre las sumas inferior y superior, es decir,. La interpretación geométrica de la integral de Darboux sería el cálculo del área de la región en [a,b] por el Método exhaustivo.
La integral de Darboux de una función f en [a,b] existe si y sólo si  sup \left\lbrace L(f,P) \right\rbrace = inf \left\lbrace U(f,P) \right\rbrace  . Del Teorema de Caracterización que dice que si f es integrable en [a,b] entonces ε>0  Ppartición de [a,b] : 0≤U(f,P)-L(f,P)≤ε, evidencia la equivalencia entre las definiciones de Integral de Riemman e Integral de Darboux pues se sigue que                              \int_{a}^{b}f - \sum_{i=1}^{n} f(t_i)\Delta_i \le U(f,P)-L(f,P) \le \varepsilon .7]Integral de Lebesgue
.http://upload.wikimedia.org/wikipedia/commons/thumb/1/1b/RandLintegrals.png/250px-RandLintegrals.pnghttp://bits.wikimedia.org/static-1.20wmf3/skins/common/images/magnify-clip.pngLa integral de Riemann no está definida para un ancho abanico de funciones y situaciones de importancia práctica (y de interés teórico). Por ejemplo, la integral de Riemann puede integrar fácilmente la densidad para obtener la masa de una viga de acero, pero no se puede adaptar a una bola de acero que se apoya encima. Esto motiva la creación de otras definiciones, bajo las cuales se puede integrar un surtido más amplio de funciones.8 La integral de Lebesgue, en particular, logra una gran flexibilidad a base de centrar la atención en los pesos de la suma ponderada.
Así, la definición de la integral de Lebesgue empieza con una medida, μ. En el caso más sencillo, la medida de Lebesgue μ(A) de un intervalo A = [ab] es su ancho, b − a, así la integral de Lebesgue coincide con la integral de Riemann cuando existen ambas. En casos más complicados, los conjuntos a medir pueden estar altamente fragmentados, sin continuidad y sin ningún parecido a intervalos.
Para explotar esta flexibilidad, la integral de Lebesgue invierte el enfoque de la suma ponderada. Como expresa Folland:9 "Para calcular la integral de Riemann de f, se particiona el dominio [ab] en subintervalos", mientras que en la integral de Lebesgue, "de hecho lo que se está particionando es el recorrido de f".
Un enfoque habitual define primero la integral de la función característica de un conjunto medible A por:
\int 1_A d\mu = \mu(A).
Esto se extiende por linealidad a las funciones escalonadas simples, que sólo tienen un número finito n, de valores diferentes no negativos:
\begin{align}
 \int s \, d\mu &{}= \int\left(\sum_{i=1}^{n} a_i 1_{A_i}\right) d\mu \\
  &{}= \sum_{i=1}^{n} a_i\int 1_{A_i} \, d\mu \\
  &{}= \sum_{i=1}^{n} a_i \, \mu(A_i)
\end{align}(donde la imagen de Ai al aplicarle la función escalonada s es el valor constante ai). Así, si E es un conjunto medible, se define \int_E s \, d\mu = \sum_{i=1}^{n} a_i \, \mu(A_i \cap E) . Entonces, para cualquier función medible no negativa f se define
\int_E f \, d\mu = \sup\left\{\int_E s \, d\mu\, \colon 0 \leq s\leq f\text{ y } s\text{ es una funcion escalonada}\right\};Es decir, se establece que la integral de f es el supremo de todas las integrales de funciones escalonadas que son más pequeñas o iguales que f. Una función medible cualquiera f, se separa entre sus valores positivos y negativos a base de definir
\begin{align}
 f^+(x) &{}= \begin{cases}
               f(x), & \text{si } f(x) > 0 \\
               0, & \text{de otro modo}
             \end{cases} \\
 f^-(x) &{}= \begin{cases}
               -f(x), & \text{si } f(x) < 0 \\
               0, & \text{de otro modo}
             \end{cases}
\end{align}Finalmente, f es Lebesgue integrable si\int_E |f| \, d\mu < \infty , \,\!y entonces se define la integral por\int_E f \, d\mu = \int_E f^+ \, d\mu - \int_E f^- \, d\mu . \,\!Cuando el espacio métrico en el que están definidas las funciones es también un espacio topológico localmente compacto (como es el caso de los números reales R), las medidas compatibles con la topología en un sentido adecuado (medidas de Radon, de las cuales es un ejemplo la medida de Lebesgue) una integral respecto de ellas se puede definir de otra manera, se empieza a partir de las integrales de las funciones continuas con soporte compacto. De forma más precisa, las funciones compactamente soportadas forman un espacio vectorial que comporta una topología natural, y se puede definir una medida (Radon) como cualquier funcional lineal continuo de este espacio; entonces el valor de una medida en una función compactamente soportada, es también, por definición, la integral de la función. Entonces se continúa expandiendo la medida (la integral) a funciones más generales por continuidad, y se define la medida de un conjunto como la integral de su función característica. Este es el enfoque que toma Bourbaki10 y cierto número de otros autores. Para más detalles, véase medidas de Radon.
ConvencionesEn esta sección f es una función real Riemann integrable. La integral
 \int_a^b f(x) \, dx sobre un intervalo [ab] está definida si a < b. Esto significa que los sumatorios superiores e inferiores de la función f se evalúan sobre una partición a = x0 ≤ x1 ≤ . . . ≤ xn = b cuyos valores xi son crecientes. Geométricamente significa que la integración tiene lugar "de izquierda a derecha", evaluando f dentro de intervalos [xi , xi +1] donde el intervalo con un índice más grande queda a la derecha del intervalo con un índice más pequeño. Los valores a y b, los puntos extremos del intervalo, se denominan límites de integración de f. Las integrales también se pueden definir si a > b:
§  Inversión de los límites de integración. si a > b entonces se define
\int_a^b f(x) \, dx = - \int_b^a f(x) \, dx. Ello, con a = b, implica:§  Integrales sobre intervalos de longitud cero. si a es un número real entonces
\int_a^a f(x) \, dx = 0. La primera convención es necesaria al calcular integrales sobre subintervalos de [ab]; la segunda dice que una integral sobre un intervalo degenerado, o un punto, tiene que ser cero. Un motivo para la primera convención es que la integrabilidad de f sobre un intervalo [ab] implica que f es integrable sobre cualquier subintervalo [cd], pero en particular las integrales tienen la propiedad de que:
§  Aditividad de la integración sobre intervalos. si c es cualquier elemento de [ab], entonces
 \int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx.Con la primera convención la relación resultante\begin{align}
 \int_a^c f(x) \, dx &{}= \int_a^b f(x) \, dx - \int_c^b f(x) \, dx \\
 &{} = \int_a^b f(x) \, dx + \int_b^c f(x) \, dx
\end{align}queda bien definida para cualquier permutación cíclica de ab, y c.En lugar de ver lo anterior como convenciones, también se puede adoptar el punto de vista de que la integración se hace sólo sobre variedades orientadas. Si M es una tal forma m-dimensional orientada, y M'es la misma forma con orientación opuesta y ω es una m-forma, entonces se tiene (véase más abajo la integración de formas diferenciales):
\int_M \omega = - \int_{M'} \omega \,.
Cálculo integralEl cálculo integral se basa en el proceso inverso de la derivación, llamado integración. Dada una función f, se busca otra función F tal que su derivada es F' = f; F es la integral, primitiva o antiderivada de f, lo que se escribe F(x) = f(x)dx o simplemente F = f dx (esta notación se explica más adelante). Las tablas de derivadas se pueden utilizar para la integración: como la derivada de x2 es 2x, la integral de 2x es x2. Si F es la integral de f, la forma más general de la integral de f es F + c, en donde c es una constante cualquiera llamada constante de integración; esto es debido a que la derivada de una constante es 0 por lo que (F + c)' = F' + c' = f + 0 = f. Por ejemplo, 2xdx = x2 + c.Las reglas básicas de integración de funciones compuestas son similares a las de la diferenciación. La integral de la suma (o diferencia) es igual a la suma (o diferencia) de sus integrales, y lo mismo ocurre con la multiplicación por una constante. Así, la integral de x = ½·2x es ½x2, y de forma similar xm dx = xm+1/(m + 1) para cualquier m -1 (no se incluye el caso de m = -1 para evitar la división por 0; el logaritmo neperiano ln|x| es la integral de x-1 = 1/x para cualquier x 0). La integración suele ser más difícil que la diferenciación, pero muchas de las funciones más corrientes se pueden integrar utilizando éstas y otras reglas (ver la tabla).
Aplicación del cálculo integralUna aplicación bien conocida de la integración es el cálculo de áreas. Sea A el área de la región delimitada por la curva de una función y = f(x) y por el eje x, para a x b. Para simplificar, se asume que f(x) 0 entre a y b. Para cada x a, sea L(x) el área de la región a la izquierda de la x, así es que hay que hallar A = L(b). Primero se deriva L(x). Si h es una pequeña variación en la x, la región por debajo de la curva entre x y x + h es aproximadamente un rectángulo de altura f(x) y anchura h (véase figura 3); el correspondiente incremento k = L(x + h) - L(x) es por tanto, aproximadamente, f(x)h, por lo que k/h es, aproximadamente, f(x). Cuando h 0 estas aproximaciones tienden hacia los valores exactos, así es que k/h f(x) y por tanto L'(x) = f(x), es decir, L es la integral de f. Si se conoce una integral F de f entonces L = F + c para cierta constante c. Se sabe que L(a) = 0 (pues el área a la izquierda de la x es cero si x = a), con lo que c = -F(a) y por tanto L(x) = F(x) - F(a) para todas las x a. El área buscada, A = L(b) = F(b) - F(a), se escribeÉste es el teorema fundamental del cálculo, que se cumple siempre que f sea continua entre a y b, y se tenga en cuenta que el área de las regiones por debajo del eje x es negativa, pues f(x) < 0. (Continuidad significa que f(x) f(x0) si x x0, de manera que f es una curva sin ninguna interrupción).El área es una integral definida de f que es un número, mientras que la integral indefinida f(x) dx es una función F(x) (en realidad, una familia de funciones F(x) + c). El símbolo (una S del siglo XVII) representa la suma de las áreas f(x)dx de un número infinito de rectángulos de altura f(x) y anchura infinitesimal dx; o mejor dicho, el límite de la suma de un número finito de rectángulos cuando sus anchuras tienden hacia 0.La derivada dy/dx = f'(x) de una función y = f(x) puede ser diferenciada a su vez para obtener la segunda derivada, que se denota d2y/dx2, f''(x) o D2f. Si por ejemplo x es el tiempo e y es la distancia recorrida, entonces dy/dx es la velocidad v, y d2y/dx2 = dv/dx es el incremento en la velocidad, es decir, la aceleración. Según la segunda ley del movimiento del Newton, un cuerpo de masa constante m bajo la acción de una fuerza F adquiere una aceleración a tal que F = ma. Por ejemplo, si el cuerpo está bajo la influencia de un campo gravitatorio F = mg (donde g es la magnitud del campo), y entonces ma = F = mg por lo que a = g, y por tanto dv/dx = g. Al integrar, se tiene que v = gx + c, en donde c es una constante; sustituyendo x = 0 se ve que c es la velocidad inicial. Integrando dy/dx = v = gx + c, se tiene que y = ½gx2 + cx+ b en donde b es otra constante; sustituyendo de nuevo x = 0 se tiene que b es el valor inicial de la y.Las derivadas de orden superior f(n)(x) = dny/dxn = Dnf de f(x) se calculan diferenciando n veces sucesivamente. El teorema de Taylor muestra que f(x) se puede aproximar como una serie de potencias f(x) = a0 + a1x + a2x2 + ... + anxn + ..., donde los coeficientes a0,a1, ... son constantes tales que an = f(n)(0)/n! (en donde 0!=1 y n!= 1 × 2 × 3 × ... × n para cualquier n 1). Las funciones utilizadas más a menudo pueden aproximarse por series de Taylor; por ejemplo si f(x) = ex se tiene que f(n)(x) = ex para cualquier n, y que f(n)(0) = e0 = 1El cálculo integral se basa en el proceso inverso de la derivación, llamado integración. Dada una función f, se busca otra función F tal que su derivada es F' = f; F es la integral, primitiva o anti derivada de f, lo que se escribe F(x) = f(x) dx o simplemente F = f dx (esta notación se explica más adelante). Las tablas de derivadas se pueden utilizar para la integración: como la derivada de x2 es 2x, la integral de 2x es x2. Si F es la integral de f, la forma más general de la integral de f es F + c, en donde c es una constante cualquiera llamada constante de integración; esto es debido a que la derivada de una constante es 0 por lo que (F + c)' = F' + c' = f + 0 = f. Por ejemplo, 2xdx = x2 + c.Las reglas básicas de integración de funciones compuestas son similares a las de la diferenciación. La integral de la suma (o diferencia) es igual a la suma (o diferencia) de sus integrales, y lo mismo ocurre con la multiplicación por una constante. Así, la integral de x = ½·2x es ½x2, y de forma similar xm dx = xm+1/(m + 1) para cualquier m -1 (no se incluye el caso de m = -1 para evitar la división por 0; el logaritmo neperiano ln|x| es la integral de x-1 = 1/x para cualquier x 0). La integración suele ser más difícil que la diferenciación, pero muchas de las funciones más corrientes se pueden integrar utilizando éstas y otras reglas (ver la tabla).Una aplicación bien conocida de la integración es el cálculo de áreas. Sea A el área de la región delimitada por la curva de una función y = f(x) y por el eje x, para a x b. Para simplificar, se asume que f(x) 0 entre a y b. Para cada x a, sea L(x) el área de la región a la izquierda de la x, así es que hay que hallar A = L (b). Primero se deriva L(x). Si h es una pequeña variación en la x, la región por debajo de la curva entre x y x + h es aproximadamente un rectángulo de altura f(x) y anchura h (véase figura 3); el correspondiente incremento k = L(x + h) - L(x) es por tanto, aproximadamente, f(x) h, por lo que k/h es, aproximadamente, f(x). Cuando h 0 estas aproximaciones tienden hacia los valores exactos, así es que k/h f(x) y por tanto L'(x) = f(x), es decir, L es la integral de f. Si se conoce una integral F de f entonces L = F + c para cierta constante c. Se sabe que L(a) = 0 (pues el área a la izquierda de la x es cero si x = a), con lo que c = -F(a) y por tanto L(x) = F(x) - F(a) para todas las x a. El área buscada, A = L (b) = F (b) - F(a), se escribe   Éste es el teorema fundamental del cálculo, que se cumple siempre que f sea continua entre a y b, y se tenga en cuenta que el área de las regiones por debajo del eje x es negativa, pues f(x) < 0. (Continuidad significa que f(x) f(x0) si x x0, de manera que f es una curva sin ninguna interrupción). El área es una integral definida de f que es un número, mientras que la integral indefinida f(x) dx es una función F(x) (en realidad, una familia de funciones F(x) + c). El símbolo (una S del siglo XVII) representa la suma de las áreas f(x)dx de un número infinito de rectángulos de altura f(x) y anchura infinitesimal dx; o mejor dicho, el límite de la suma de un número finito de rectángulos cuando sus anchuras tienden hacia 0.La derivada dy/dx = f'(x) de una función y = f(x) puede ser diferenciada a su vez para obtener la segunda derivada, que se denota d2y/dx2, f''(x) o D2f. Si por ejemplo x es el tiempo e y es la distancia recorrida, entonces dy/dx es la velocidad v, y d2y/dx2 = dv/dx es el incremento en la velocidad, es decir, la aceleración. Según la segunda ley del movimiento del Newton, un cuerpo de masa constante m bajo la acción de una fuerza F adquiere una aceleración a tal que F = ma. Por ejemplo, si el cuerpo está bajo la influencia de un campo gravitatorio F = mg (donde g es la magnitud del campo), y entonces ma = F = mg por lo que a = g, y por tanto dv/dx = g. Al integrar, se tiene que v = gx + c, en donde c es una constante; sustituyendo x = 0 se ve que c es la velocidad inicial. Integrando dy/dx = v = gx + c, se tiene que y = ½gx2 + cx + b en donde b es otra constante; sustituyendo de nuevo x = 0 se tiene que b es el valor inicial de la y.La integral definida de una función representa el área limitada por la gráfica de la función, con signo positivo cuando la función toma valores positivos y negativo cuando toma valores negativos.La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral es una suma de infinitos sumandos, infinitamente pequeños.
El cálculo integral, encuadrado en el cálculo infinitesimal, es una rama de las matemáticas en el proceso de integración o anti derivación, es muy común en la ingeniería y en la matemática en general; se utiliza principalmente para el cálculo de áreas y volúmenes de regiones y sólidos de revolución.

No hay comentarios:

Publicar un comentario